
 150

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 15, No 3

Sofia • 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2015-0048

Performance Guarantee Mechanism for Multi-Tenancy
SaaS Service Based on Kalman Filtering

Liu Yanpei1, 2, Li Chunlin1 ,Yang Zhiyong1 , Chen Yuxuan3 , Xu Lijun1

1 Department of Computer Science, Wuhan University of Technology, Wuhan, China
2 Information Engineering College, Henan Institute of Science and Technology, Xinxiang, China
3 Department of Microelectronics and Solid-State Electronics, University of Electronics Science and
Technology of China, Chengdu, China
Email: liupeiok123@gmail.com

Abstract: This paper proposes a special System Architecture for Multi-tenancy
SaaS Service (SAMSS), which studies the performance security issues at the
business logic layer and data processing layer respectively. The Kalman filtering
Admission Control algorithm (KAC) and the Greedy Copy Management algorithm
(GCM) are proposed. At the business logic layer, Kalman filtering admission
control algorithm is presented. It uses a Kalman filter to conduct the dynamic
evaluation for the CPU resource for multi-tenancy SaaS service and reduces the
unnecessary performance expenses caused by direct measurement of CPU
resources. At the data processing layer, the Greedy Copy Management algorithm
(GCM) is presented. It changes the copy placement as a K-partitioning set
partitioning problem and adopts a greedy strategy to reduce the number of times
for creating a data copy. Finally, the experimental analysis and results prove the
feasibility and efficiency of the algorithms proposed.

Keywords: Kalman filtering, business logic layer, data processing layer, multi-
tenancy, SaaS.

1. Introduction

Software as a Service (SaaS) is a way of software deployment. Tenants of the order
services have authorized its end users to access the software through the network on
demand, where the end users share the applications and data. Multi-tenancy enables
the concurrent users from different tenants to share the same infrastructure

 151

resources, for the sake of cost reducing and income increasing, which is one of the
key features of SaaS service under the circumstances of large-scale cloud
computing [1-3].

Performance guarantee for multi-tenancy SaaS service has been focused on in
recent studies. Flash crowd [4] is a large number of tenants requesting SaaS service
simultaneously, causing the server to overload and the server buffer to be
completely consumed. Large numbers of request packets have been discarded. Due
to the computing resource limits, the accepted tenant requests must wait long for the
allocated computing resources, that causes a great impact on the delay performance,
the tenants tend to give up the service because of a packet loss or too long waiting
time, resulting in great loss. In addition, with the rapid increase of SaaS service
tenants and the random appearance of tenants’ Flash crowd, the data resources are
facing great load and stress, which means that the data resources will become the
bottleneck of the whole SaaS service. You need to adapt to the load fluctuation by
dynamic changing the number of servers.The strategy of admission control and
copy management is the key to the system performance guarantee mechanism for
multi-tenancy SaaS service. As for the admission control strategy, García D F et al.
[5] point out the requirements that should be met when the QoS control mechanism
of service provider server works in B2B environment, putting forward the QoS
control mechanism with a monitor and a controller. The service quality control
algorithm makes schedules according to the user’s priority. The QoS control
mechanism ensures the system performance under circumstances of overload.
Z h a n g et al. [6] propose a resource consumption estimate model in a multi-
tenancy application environment, based on the maximum size of tenants with given
nodes, figured out by the heuristic algorithm. But the present researches can hardly
assess the time-varying resource state of SaaS services efficiently and the precision
of the method depends on long time, high quality samples as inputs, which is easily
affected by outliers caused by resource competition, thus generating errors in the
admission control mechanism [7]. In addition, the current copy management
strategy mostly adopts the method of creating copy numbers and fixed timing [8],
so it is difficult to adapt to SaaS service by the dynamic change of the number of
tenants, such as creating too many copies, for there will be waste of storage space.
On the other hand, the system performance cannot be improved efficiently. In
addition, a frequent migration of the copy data will consume the network
bandwidth, thus reducing the performance of the system.

In the viewpoint of the problems above mentioned, this paper studies its
performance guarantee respectively at the layer of business logic and data
processing. At the business logic layer, Kalman filtering [9] was used to reflect the
resource usage and surplus situation on different servers in time for CPU resources
dynamic assessment for multi-tenancy SaaS service. It provides the basis for
tenant’s admission control mechanism. KAC, the Kalman filtering admission
control algorithm was proposed. At the data processing layer, the system
architecture is adapted to the dynamic changes of the load by dynamically adjusting
the load distribution among every copy and the placement of a copy between the
nodes. The optimal weighted rotation scheduling algorithm was used to realize the

 152

distribution of the load. Also, the system architecture classified the copy placement
into a K-partitioning [10] set partition problem and utilizes the greedy strategy to
reduce the creation times. GCM, the algorithm of greedy copy management was
proposed.

This paper is divided into five sections. Section 1 outlines the system
architecture SAMSS for multi-tenancy SaaS service; Section 2 discusses the
performance guarantee mechanism at the business logic layer; Section 3 describes
the performance guarantee mechanism of the data management layer; Section 4
presents an experimental analysis for the performance guarantee technology.
Finally, there is a summary of the paper.

2. System architecture for multi-tenancy SaaS service

The System Architecture for Multi-tenancy SaaS Service (SAMSS) discussed in
this paper is made up of the business logic layer and data processing layer. A full
service request process starts from the business logic layer, and it may need access
to the data processing layer many times during the process until it generates a
complete response and returns the response to the tenant.

The business logic layer is mainly intended to provide a certain degree of
performance guarantee for tenants. The business logic layer of SAMSS mainly
consists of resource dynamic evaluation components and an access control unit. The
resource dynamic assessment components mainly use a Kalman filter to make
resource consumption calculation for the multi-tenant SaaS service, so that the
system resource usage and the remaining ones can be obtained timely to provide a
basis for judgment at the next step of access control. The access control unit
manages the access request of the tenants in the whole system to prevent the system
from being overloaded and decides whether to accept the new tenant requests
according to the usage of the server resource.

The data processing layer is mainly intended to provide high availability of
data protection to tenants. SAMSS maintains multiple copies of data distributed on
different nodes for each tenant. In SAMSS the reliability and access efficiency of
each tenant’s data can be improved through the use of multiple nodes, so a request
dispatcher used for load balancing between nodes is supposed to be added.

2.1. The performance guarantee mechanism of the business logic layer
This strategy uses a Kalman filter to do the dynamic assessment of CPU resources
for multi-tenant SaaS services and reduces the direct measurement of CPU
resources, when it needs to inject a probe and causes unnecessary performance
overhead. Besides, the multi-tenant strategy access control is designed by using the
method of resource allocation and resource reservation and it avoids the system’s
overload caused by flash crowd tenants.

2.1.1. The dynamic evaluation of multi-tenant CPU resources based on a Kalman
filter
Kalman filter has been widely used and studied in the fields of automatic control
and auxiliary navigation, and its main characteristic is that it can use a form of

 153

approximately optimal estimation based on an observable value to estimate
unobservable value, and can update the former observed value as the new observed
value comes out, therefore it is more suitable for online assessment of the time-
varying resource state.

Kalman filter provides a general method to estimate the unobservable value x
in discrete time points. The state kx at point k can be defined as a linear stochastic
difference equation:
(1) 11 −− += kkk wAxx .

The test value kz at point k is defined as

(2) kkkk vxHz += ,
where: A is the state transition matrix from the k – 1 point to the k-th point; 1−kw is
the process error; 1−kQ is the covariance matrix; kH is the transition matrix from kx
to kz ; kv is the observation error; kR is the covariance matrix.

Multi-tenant SaaS service request process may involve a variety of resources.
Those with higher resource utilization rate are called bottleneck resources. For
different types of services, the bottleneck resources may be different, but the
bottleneck resources for multi-tenant SaaS service are most likely to be the CPU
resources. Therefore, in this paper we mainly consider the dynamic assessment of
the CPU resources. For multi-tenant SaaS services, the prerequisite condition for
dynamic assessment is collecting online server log information, including the
tenant’s throughput amount and CPU utilization rate of the server. During the
service, runtime information is monitored and recorded at a fixed time interval, this
interval is called a monitoring window. For convenience of discussion, to a server
which is the host of N tenants, we give the following symbols and their meanings:

T indicates the size of the monitoring window;
iN indicates the number of transactions that the i-th（ Ni ≤≤1 ）tenant

completes in the monitoring window;
UCPU indicates the average CPU utilization rate of the server in the monitoring

window;
iS indicates the average service time of all the i-th tenant’s transactions

(namely, average CPU time occupied by all transactions).
According to the Utilization Law [11], the resource utilization rate is equal to

the throughput amount multiplied by the service time, the equation obtained is as
follows:
(3) .CPU ∑=

i
iiSNTU

Due to the difficulty to measure the service time iS accurately, we use iC to
represent its approximation, so as to obtain the calculation equation of the resource
utilization CPUU ′ rate approximation:

 154

(4) .CPU T

CN
U i

ii∑
=′

A statistical analysis method can be used to solve iC , for such indirect
approximation solution of the problem, the error of CPUU and CPUU ′ is one of the
typical indicators for measuring accuracy. Next, our goal is to work out how to
reduce the error of the real service time iS and the approximate service time iC .

Firstly, we model the unobservable state x into an N-dimensional vector
),,,(21

k
N

kk
k CCCx L= which contains N tenants’ average service time of

transactions, and it indicates each tenant’s average service time of transactions at
point k . Then, according to Formula (3), we model the observed total CPU
utilization rate kz and we obtain:

(5) k
i

k
i

k
i

k v
T

CN
z +=

∑
,

where k
iN indicates the monitored throughput rate of tenant i ; the transition matrix

kH from kx to kz is defined as),,,(21

T
N

T
N

T
N k

N
kk

L .

The Kalman filter algorithm makes iteration assessment on the service time at
the end of each monitoring window, the initial value including the state initial value

0x̂ and the initial error covariance matrix. The iteration process is as follows:

① forward projection of the state of x –
(6) 1ˆˆ −

− = kk xAx ;

② calculate forwards the covariance matrix of the state priori estimate

error −
kP –

(7) ;T
1 kkk QAAPP += −

−

③ calculate the Kalman gain kK –

(8) ;)(1TT −−− += kkkkkkk RHPHHPK
 update the state of x according to the observed variable kz –

(9))ˆ(ˆˆ −− −+= kkkkkk xHzKxx ;
 calculate the covariance matrix kP of the estimate error after the state has

been updated –
(10) −−= kkkk PHKIP)(.

In the process of iteration, step which modifies the state of x is the key to
update the estimated value, this equation can be simplified in the form of
xnew = xold + K•e, which is to say, that K can be regarded as the weight matrix of the

 155

modified x , and the error e and the corresponding weight are used to correct the
data xold At the same time, in the calculation of step , it is also necessary to
consider to set the valuation range of the average service time for each tenant affair,
namely non-negative and less than a certain upper bound: k

k
i uC <≤0 , where ku

is the upper bound of the estimated value. In this paper we set the range of state
x as:)))1((,0(1−−+ kk xu μμ , where 9.0=μ and uk = Uk

CPUT / Ni
k. Then the

calculation at step is revised as:
(11)),(trial −− −+= kkkkkk xHzKxx)))
(12))).)1((,min(1

trial
−−+= kkk xuxx μμ))

When there is any tenant requesting to be allowed to enter the system, the
system calculates the resource consumption by using the multi-tenancy CPU
resource dynamic assessment method based on Kalman filtering. The usage and the
rest of the system resource can be known in time, providing the basis for the next
tenant’s admission control mechanism, so that that the delay, due to making a
decision by monitoring the response time, can be avoided, reducing the unnecessary
performance expenses caused by direct measurement of CPU resources which
needs an injected probe.

2.1.2. Admission control mechanism
In the proposed system framework for multi-tenancy SaaS service, there are three
dependent services represented, respectively standing for tenant’s three kinds of
services, where there is a competition for service S3 between (S1, S2, S3) and
(S4, S5, S3), which is very common in the multi-tenancy SaaS service system.

To illustrate our control strategy, we deal with the n requests from tenant t ,
and only considering the CPU resource as an example. When a tenant request
arrives, the system will begin to implement the admission control algorithm, which
includes the allocation part and the reserve part of resources. In the allocation part,
if the remaining resources in the server where there are service instances of S1, S2,
S3 are greater than the specified minimum remaining resources of each server, the
algorithm will firstly work out the acceptable request number n. Once a new
request is accepted, the system will recalculate the remaining resources of RS1, RS2,
RS3 by using a multi-tenancy CPU resource dynamic assessment method based on
Kalman filtering, and at the same time, it will record its online tenants numbers
according to the request category. If the remaining resources in the servers of S1,
S2, S3 are less than the minimum remaining resources, this means it has attained a
critical load state. If the tenants are still a lot, we can only accept a limited number
of accessed requests from a part of the senior tenants (tenant classification: senior
tenants, intermediate tenants and primary tenants). This efficiently improves the
impact the system has on the performance of senior tenants with heavy load. In
order to further improve the system’s ability to handle the request, we set a buffer
queue in the controller, to store temporarily in the cache queue a certain number of
access requests rejected due to overload protection. Once the system resources have
a rest, these requests will be processed in time. We call it the Kalman filtering
Admission Control algorithm (KAC).

 156

2.2. The performance guarantee mechanism of the data processing layer

With the rapid increase of SaaS service tenants and the random appearance of
tenants’ Flash crowd, the data resources are under great load and pressure, which
means that the data resources will become the bottleneck of the whole SaaS service;
hence a performance guarantee mechanism is required for the layer of data
processing. Within the data processing layer, SAMSS will allocate each data copy
to each node and use the data-copying algorithm according to [12] to ensure the
consistency of each copy. The point of this section is to seek out how to adjust the
allocation of loads among the copies and the placement of copies among nodes to
guarantee the performance indicators at the data processing layer on the basis of
ensuring the consistency of each copy. At present, the setting of the load
distribution strategy [13, 14] and the copy placement strategy [15-17] are facing the
following problems.

Setting the load distribution strategy, under the premise of fixed copy
placement, how to allocate the read only load to each node has become a key sub-
problem for the performance safeguard mechanism. The difficulty of this sub-
problem is how to improve the overall performance of the system under the
restriction of the state by balancing the load of each node as much as possible. The
setting of a copy placement strategy, the dramatic change of the load makes the
work of balancing each node only by load distribution difficult, hence the system
must adjust the mapping of copies to nodes and the gross of data nodes to have the
load balanced. In this process, the system must minimize the usage of resources and
the moves of copies, which increase the difficulty of setting of the copy placement
strategy.

This section focuses mainly on studying the above two problems. In order to
facilitate the discussion, we list the following symbols and their meanings:

S – the set of data nodes, j of which is denoted by js , and [1,]j M∀ ∈ ;

T – the tenants collection, i of which is denoted by it , and [1,]i N∀ ∈ ;

L – the system’s overall load vector, namely 1 2, , , NL L L L=< >L ;

SFi,j – the Stretch Factor indicator of the request of the tenant it when

performed on js ;

Ri
T – the copy number of tenant it , and ,T

maxR ,T
minR ,T

defaultR respectively

represent the maximum, the minimum and the default value of Ri
T;

K – the vector the server uses; when 1=jk , it means that the server is in a

running state, and when 0=jk just the opposite;

A – the placed matrix of a copy of the data, namely

 157

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

MNN

M

AA

AA
A

,1,

,11,1

　　　
　　　　　　

　

L

MOM

L

;

if server js maintains a copy of the data of tenant it then 1, =jiA , otherwise

0, =jiA ;

0A – the generated placed matrix of copy in the process of the last copy’s

adjustment;

λ – the load distribution matrix, namely

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

MNN

M

,1,

,11,1

λλ

λλ
λ

　　　
　　　　　　

　

L

MOM

L

,

where ji,λ represents the request rate when the load of tenant it is allocated to the

server node js , furthermore, R
ji,λ represents the request rate when the read load of

tenant it is allocated to the server node js , and W
ji,λ represents the request rate when

the load of tenant it is allocated to the server node js .

SFmax – the elongation factor threshold of the data query request;

maxU – the biggest resource utilization threshold of each node;

Utarget – the overall goal resource utilization of the system;

UupperThreshold – the floating range of the upper limit of the overall resource

utilization of the system;

UlowerThreshold – the floating range of the lower limit of the overall resource

utilization of the system.

2.2.1. Load distribution

In order to accurately analyze the load distribution problems, it is necessary to
define the metrics of the load balancing degree, and establish the performance
model of data nodes, which is used to estimate the effect of adjustment before
setting the real resource management strategies

Taking lessons from previous works, this paper uses a queue having multiple
types of M/G/1/ PS requests as the performance model of each data node.

 158

According to the queuing theory results, the requesting elongation factor performed
on node js is

(13) SFi,j
, ,1

1 1
1 1 ()

N W W R R
j i j i i j ii

U D Dλ λ
=
∑

= =
− − +

,

where node Uj represents the resource utilization rate, and 10 <≤ jU ; W
iD and R

iD

respectively represent the write data rate and read data rate of tenant it .
This paper takes the load inclination rate as the cluster node load imbalance

degree of metrics, the formal definition is as follows:

(14) .
1

1Slope
1
∑
= −

=
M

j jU

Thus the features of the load inclination rate could be concluded:
1. When a node’s resource utilization rate is high, its contribution to the load

inclination rate will greatly improve. When a node’s resource utilization rate
approaches 100%, the system load inclination rate approaches infinity.

2. When each data node is at the same resource utilization rate, the load
inclination will be minimum.

Based on the above performance model and the metrics, we could further form
the load balancing problem into the following formula:

(15)
()

,
1

1)(Slopemin
1

1
,,

∑
∑=

=

+−
=

M

j
N

i

R
i

R
ji

W
i

W
ji DD λλ

λ

where the reasonable value range of read requests distribution is

,1
[1,], [1,],

M R R
i j ij

i N j M Lλ
=
∑∀ ∈ ∈ = , if , 0i jA = then , 0R

i jλ = , ,0 R R
i j iLλ≤ ≤ ; the

reasonable value range of the write requests distribution is ,

,

,

, 1
0, 0

W
i i jW

i j

i j

L A
A

λ
=⎧⎪= ⎨

=⎪⎩
, which

also requires that the load summation of each node distributed must be less than its

processing power, namely ∑
=

<+
N

i

R
i

R
ji

W
i

W
ji DD

1
,, 1][λλ .

The above issues belong to a special kind of the load distribution problem; the
ideal state is the system to be able to get the load information of each node in a data
copy in the distribution of each tenant request. For each tenant it request, we
distribute it to the node which has the smallest queue length in the node collection
of the data copy where it is stored. But it is the proper state to be able to get the
data and the load information of each node in the copy in time; we call this
algorithm the Shortest Queue First (SQF). In an actual situation, when each tenant
request is distributed in the system, the load information of each node can only be
obtained periodically. Then the Weighted Round-Robin scheduling algorithm is
adopted. We use the loading intensity that each tenant it is assigned to the node js

 159

as the weight ji ,λ of the Weighted Round-Robin scheduling algorithm. This
algorithm is called the Optimal Weighted Round-Robin (OWRR). The load
distribution matrix obtained from this algorithm is called the Optimal Balanced
Load (OBL).

2.2.2. The copy placement

When the load fluctuation is relatively severe, simply changing the distribution of
load will make it difficult to accomplish the whole goal of this section that is
minimizing the consumption of resources on condition that each performance index
of the tenant is assured. To further implement the target, the dynamic adjustment to
the copy placement is needed. Specifically, two kinds of performance management
methods of the load distribution and the copy placement need to be considered
simultaneously. The performance management goal on the data processing layer
can be formally described as follows:
(16) 0 ,1

min (,) min (,) | | {0,1}
M

j i jj
f A k g A A A Aλ λ

=
∑= = − ∈　　 　 ,

where the number of data copy of each tenant has the following range],,1[Ni∈∀

],[T
max

T
min

1
, RRA

M

j
ji ∈∑

=

; and it is required that only nodes in the moving state can

place the data copy, namely

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

>
=∈∀

∑

∑

=

= ;
0if0

0if1
],,1[

1
,

1
,

N

i
ji

N

i
ji

A

A
kMj the reasonable

value range of read requests is
,

,

,

, 1
0, 0

W
i i jW

i j

i j

L A
A

λ
=⎧⎪= ⎨

=⎪⎩
; and the performance index for

each tenant is bounded, namely
, ,1

1
1 ()

N W W R R
i j i i j ii

D Dλ λ
=
∑

≤
− +

 SFmax.

Through classifying the problem above mentioned into a K-partitioning set
partition problem, we can draw the conclusion that it is a NP-hard problem, so it is
difficult to get the optimal solution. This paper uses a greedy strategy to try to find
an optimal solution. We call it the GCM algorithm. GCM is composed of the node
providing algorithm and the copy placement algorithm.

The node providing algorithm adapts to changes in the overall intensity of load
by dynamically adjusting the number of nodes in the system. Specifically, when
shrinking the number of nodes, the algorithm adopts the strategy of deleting the
node with the lowest load first under the Optimal Balanced Load (OBL) scheme.
Since deleting any nodes may make the amount of certain tenant data copy less than
the node T

minR , it is reasonable to move it to some reserved nodes rather than simply
throw it away. Also, it is necessary to move the copy to the node with the lowest
load first under the OBL scheme when a copy movement is required.

 160

In essence, the copy placement algorithm is a kind of a greedy algorithm.
Every time when the copy that needs adjustment is selected, the copy placement
algorithm first chooses to completely reduce the extent of the copy that has an
unbalanced load. The time complexity of this algorithm is O(n), where n represents
the number of nodes. The copy placement algorithm is used for the adjustment of
the copy placement to adapt to the change of the proportion of each tenant in the
system when the load varies. First of all, the copy placement algorithm calls the
node providing algorithm to adjust the node volume. Subsequently, it keeps an eye
on the load balance between nodes.

3. Experimental analysis
This section discussed the effect of the multi-tenant SaaS service performance
guarantee mechanism separately on the business logic layer and data processing
layer.

3.1. The business logic layer

The experimental environment is a typical three-tier architecture system, including
the Tomcat server which deploys the services S1, S2, S3, S4 and a number of
database servers. S1, S2, S3, S4 are deployed on the same server, the Apache
JMeter 2.4 is run to simulate a tenant’s load, and the average response time,
throughput, and the other data is obtained through “Graph Result” listeners. All
systems are run on Windows Server 2003. In order to verify the effect of the
performance guarantee mechanism at the business logic layer, we perform multi-
tenant CPU resources dynamic evaluation strategy based on a Kalman filter, and the
admission control mechanism is used on the basis of the evaluation. The CPU
overload threshold is set to 90% according to the experience. Figs 1 and 2 show the
CPU utilization and the total CPU utilization of the services S1, S2, S3, S4,
separately without an admission control mechanism and with the use of an access
control mechanism when the tenants number rapidly fluctuate.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50 60
t i me/ mi n

CP
U

ut
il

iz
at

io
n/

% ser vi ce S1

ser vi ce S2

ser vi ce S3

ser vi ce S4

t ot al CPU
ut i l i zat i on

Fig. 1. Without an admission control mechanism

 161

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50 60
t i me/ mi n

CP
U

ut
il

iz
at

io
n/

% ser vi ce S1

ser vi ce S2

ser vi ce S3

ser vi ce S4

t ot al CPU
ut i l i zat i on

Fig. 2. With an admission control mechanism

As shown in Fig. 1, without the use of an admission control mechanism, with

the rapid increase of the number of tenants and the tenant request services S1, S2,
S3, S4 at the same time, leading to the server’s overload, the server’s CPU total
utilization rate is close to 100%, which heavily affects the response time. Therefore,
the tenants need to wait for a long time. Even some of the tenants’ request packet is
directly discarded, which seriously affects the user experience. Fig. 2 shows that
due to the use of an admission control mechanism, with the same high load, the
server’s CPU total utilization rate remains below 90%. Although it is in the case of
a Flash crowd, it still affects the response time of the request, but the total CPU
utilization remains in a reasonable scope, promoting the user experience.

3.2. The data processing layer

In order to evaluate the effect of the performance guarantee mechanism on the data
processing layer, we adopt the method of simulation analysis to verify whether
GCM can adjust to the dynamic changes of the load through the load distribution
and the copy adjustment. We use the widely used and authoritative simulation tool
CloudSim.

The parameters of the simulator configuration are as follows: the number of
tenants is 1500; the number of copies of each tenant is 4; the number of nodes is 40.
In the simulation process, we gradually adjust the overall load intensity to reflect
the change of node average resource utilization. We compare the algorithm of
OWRR that we proposed, the classical algorithm of Shaped Round-Robin (SRR),
Deficit Round Robin (DRR) with the ideal algorithm of the Shortest Queue First
(SQF). The comparison results are shown in Fig. 3.

0
500

1000
1500
2000
2500

0. 65 0. 7 0. 75 0. 8 0. 85
r esour ce ut i l i zat i on

re
sp

on
se

 t
im

e/
ms

SQF
OWRR
DRR
SRR

Fig. 3. The performance comparison of four kinds of load distribution algorithms

 162

We can see from Fig. 3 that SQF is an ideal state. With the increase of the
resource utilization, there is almost no change in the response time. The
performance of OWRR is far better than SRR and DRR, the reason for which is that
there is no overall coordination of each tenant load in SRR and DRR, thus leading
to a situation where some nodes are under too heavy loads whereas some nodes
loads are too light. The performance of processing the tenant requests will be
greatly reduced when the load of the node is too heavy. The results show that the
OWRR algorithm has a better performance.

It is difficult to deal with the wide margin of fluctuations of the overall load
intensity by using the load distribution alone. Then we take the dynamic adjustment
of the copy placement into consideration to verify whether GCM can guarantee the
performance index of each tenant database on condition that the utilization ratio of
system resources is quite high. Taking into account the fact that the system
performance will be influenced during the process of copy adjustment, we are
looking forward to the minimum times of copy adjustment. Copy adjustment can be
refined into creating a copy and deleting a copy. The cost of creating a copy is
much higher than deleting one, therefore, in the subsequent experiments, we use the
times of creating a copy as one of the main evaluation indices.

Based on the approximate linear relationship between the system load and the
response time, we concluded from the experiment that when the tenant number was
1000, the system load reached its limit. Then we tested the situation where the
tenant number ranged from 800 to 1500 to determine the efficiency of the safeguard
mechanism in the system data processing layer with light load and heavy load.
Fig. 4 shows the performance of the algorithm of GCM under the load driver.

700
800
900

1000
1100
1200
1300
1400
1500
1600

0 10 20 30 40 50 60 70 80 90
t i me/ mi n

th
e

nu
mb

er
 o

f
te

na
nt

s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50 60 70 80 90
t i me/ mi n

re
so

ur
ce

 u
ti

li
za

ti
on

(a) (b)

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90
t i me/ mi n

th
e

ti
me

s
of

 t
he

 c
op

y
cr

ea
ti

on

300400500600700800900100011001200130014001500

0 10 20 30 40 50 60 70 80 90
t i me/ mi n

th
e

av
er

ag
e

re
sp

on
se

ti
me

/m
s

(c) (d)

Fig. 4. The performance of the algorithm GCM under the load driver

 163

Fig. 4 (a) shows the curve chart with an independent variable of time when the
number of tenants ranges from 800 up to 1500. Fig. 4(b) shows the change of the
average resource utilization of nodes as time varies. Fig. 4(c) shows the change of
the times of the copy creation. Fig. 4(d) shows the change of the average response
time of all tenants as time varies. We can see from the diagrams for the load above
given, that GCM can well guarantee the resource utilization on the overall platform
and assure that the times of creating a copy are within a reasonable range. A
conclusion can be drawn that our safeguard mechanism at the data processing layer
has played a good role.

4. Conclusion

The present paper proposed the system architecture SAMSS for multi-tenancy SaaS
service, studied SaaS service performance guarantee mechanism respectively at the
business logic layer and the data processing layer. For a multi-tenant request
processing process at the business logic layer this paper, based on the two aspects of
dynamic evaluation of CPU resources and admission control mechanism, puts
forward KAC − the Kalman filtering admission control algorithm that has used a
Kalman filter to make a dynamic assessment for CPU resources of multi-tenancy
SaaS service and response on different server resource usage in time, which would
avoid unnecessary performance overhead resulting from an injected probe by direct
measurement of the CPU resources. For multi-tenant data processing this paper
pertinently studies the two aspects of load allocation and a copy, the optimal
weighted rotation scheduling algorithm is used to get the distribution of the load
between each copy. This paper brings up the business management approach, the
GCM, which loads the balancing issues under the premise of a fixed copy
placement formalized as an optimization problem, and puts forward to get the
optimal load distribution of the load balancing algorithm. The experimental results
show that the GCM can adapt to the dynamic changes of the load through fewer
copies of adjustment and guarantee the performance of the tenant database while
maintaining high node resource utilization.

Acknowledgements: This work was supported by the National Natural Science Foundation under
Grants (No 61472294, No 61171075), the Program for the High-end Talents of Hubei Province, Key
Natural Science Foundation of Hubei Province (No. 2014CFA050), and the Open Fund of the State
Key Laboratory of Software Development Environment (SKLSDE). Any opinions, findings, and
conclusions belong to the authors and do not necessarily reflect the views of the above agencies.

R e f e r e n c e s

1. M i e t z n e r, R., A. M e t z g e r, F. L e y m a n n et al. Variability Modeling to Support
Customization and Deployment of Multi-Tenant-Aware Software as a Service Applications.
– In: Proc. of 2009 ICSE Workshop on Principles of Engineering Service Oriented Systems.
IEEE Computer Society, 2009, pp.18-25.

2. Z h a n g, F., J. C h e n, H. C h e n et al. Cloudvisor: Retrofitting Protection of Virtual Machines in
Multi-Tenant Cloud with Nested Virtualization. – In: Proc. of 23rd ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 203-216.

 164

3. Z h a n g, Q., L. C h e n g, R. B o u t a b a. Cloud Computing: State-of-the-Art and Research
Challenges. – Journal of Internet Services and Applications, 2010, pp. 7-18.

4. L i u, F., B. L i, L. Z h o n g et al. Flash Crowd in P2P Live Streaming Systems: Fundamental
Characteristics and Design Implications. – Parallel and Distributed Systems, IEEE
Transactions on, Vol. 23, 2012, No 7, pp. 1227-1239.

5. G a r c í a, D. F., J. G a r c í a, J. E n t r i a l g o et al. A qos Control Mechanism to Provide Service
Differentiation and Overload Protection to Internet Scalable Servers. – Services Computing,
IEEE Transactions on, Vol. 2, 2009, No 1, pp. 3-16.

6. Z h a n g, Y i, Z h i h u W a n g, B o G a o et al. An Effective Heuristic for On-Line Tenant
Placement Problem in SaaS. 2010 ieee International Conference on. IEEE, 2010,
pp. 425-432.

7. C h e r k a s o v a, L., K. O z o n a t, N. M i et al. Automated Anomaly Detection and Performance
Modeling of Enterprise Applications. ACM Transactions on Computer Systems, Vol. 27,
2009, No 3, pp. 6.

8. S h v a c h k o, K., H. K u a n g, S. R a d i a et al. The Hadoop Distributed File System. Mass
Storage Systems and Technologies. – In: Proc. of 2010 IEEE 26th Symposium on IEEE,
2010, pp. 1-10.

9. K a l m a n, R. E. A New Approach to Linear Filtering and Prediction Problems. – Journal of Basic
Engineering, Vol. 82, 1960, No 1, pp. 35-45.

10. B o v i e r, A., I. K u r k o v a. Poisson Convergence in the Restricted k‐Partitioning Problem. –
Random Structures & Algorithms, Vol. 30, 2007, No 4, pp. 505-531.

11. L a z o w s k a, E. D., J. Z a h o r j a n, G. S. G r a h a m et al. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., 1984.

12. B a n s a l, S., S. S h a r m a, I. T r i v e d i. A Dynamic Replica Placement Algorithm to Enhance
Multiple Failures Capability in Distributed System. – International Journal of Distributed and
Parallel Systems (IJDPS), Vol. 27, 2011, No 3.

13. Y o o n, J. H., J. H. C h o i, K. J. L e e et al. A Fully Distributed Replica Allocation Scheme for an
Opportunistic Network. – Wireless Networks, 2013, pp. 1-13.

14. L i, B., S. S o n g, I. B e z a k o v a et al. Energy-Aware Replica Selection for Data-Intensive
Services in Cloud. Modeling, Analysis & Simulation of Computer and Telecommunication
Systems. – In: Proc. of 2012 IEEE 20th International Symposium on. IEEE, 2012,
pp. 504-506.

15. H u a n g, X., Y. P e n g. A Novel Replica Placement Strategy for Data Center Network. – In: Proc.
of 2012 International Conference on Information Technology and Management Science
Proceedings. Berlin Heidelberg, Springer, 2013, pp. 599-609.

16. T u, M., I. L. Y e n. Distributed Replica Placement Algorithms for Correlated Data. – The Journal
of Supercomputing, 2013, pp. 1-29.

17. M é n d e z M u ñ o z, V., G. A m o r ó s V i c e n t e, F. G a r c í a C a r b a l l e i r a et al.
Emergent Algorithms for Replica Location and Selection in Data Grid. – Future Generation
Computer Systems, Vol. 26,2010, No 7, pp. 934-946.

